
JOURNAL OF COMPUTATIONAL PHYSICS 50, 482498 (1983) 

Numerical Solution of the Zakharov Equations* 

G. L. PAYNE, D. R. NICHOLSON, AND R. M. DOWNIE 

Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242 

Received February 23, 1982; revised September 23, 1982 

A new algorithm for the numerical solution of the Zakharov equations is presented. This 
algorithm is explicit and it is second-order accurate. The convergence of the algorithm is 
demonstrated by numerically solving the Zakharov equations for several test cases. 

1. INTRODUCTION 

One of the most fundamental and fascinating phenomena in plasma physics is 
Langmuir turbulence [ 1,2]. Although in the low-amplitude linear limit this 
turbulence consists only of high-frequency electron oscillations, the presence of larger 
amplitude waves induces nonlinearities which couple the high-frequency electron 
oscillations to low-frequency ion oscillations. These nonlinearities lead to parametric 
instabilities, including a three-wave interaction called the parametric decay instability 
and a four-wave interaction called the modulational instability or oscillating two- 
stream instability 131. The strongly nonlinear state leads to the formation of coherent 
structures called solitons [4]; these structures are stable in one dimension and can 
collapse catastrophically in two or three dimensions 15-91. Zakharov [S] (see also 
Hasegawa [lo]) introduced a relatively simple set of fluid equations to describe all of 
these physical phenomena. In one spatial dimension, the Zakharov equations are 

i a,E(x, t) + a:E = nE, (1) 

a;+,+a$=a: 1~12, (2) 

where t is dimensionless time, x is dimensionless distance, E(x, t) is the dimensionless 
slowly varying envelope of the high-frequency electric field, and n(x, t) is the dimen- 
sionless low-frequency density, variation. The numerical and analytic study of the 
properties of (1) and (2) is a very active area of research in fundamental plasma 
physics [5-131. 

We are interested in solutions of the Zakharov equations for periodic systems with 
a large enough period so that the length of the individual solitons is small compared 
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to the period. A standard technique to obtain accurate representations of the spatial 
variations is to use the spectral method [ 141. In this method we solve in the time 
variable by a finite difference method. Since the algorithm should provide accurate 
answers at asymptotic times, it is necessary to use many small time steps. Thus, we 
would like to have a stable, efficient, and accurate algorithm for time integration. 
Normally, for nonlinear differential equations the numerical algorithm leads to 
nonlinear equations which must be solved by iteration; that is, the method is an 
implicit scheme [ 14, 151. As many as 10 iterations are required to solve these implicit 
schemes [ 151. Since these iterations require a considerable amount of computer time, 
we present in this paper an algorithm which is explicit and is second-order accurate 
(the local error is proportional to the time step cubed). In Section 2 we derive the 
algorithm and in Section 3 we find an analytic solution of the Zakharov equations for 
the periodic case. In Section 4 we test the algorithm for this analytic solution and for 
a more realistic case which does not have an analytic solution. The method is shown 
to be accurate, stable, and efficient. 

2. DERIVATION OF ALGORITHM 

For a periodic system an accurate and efficient numerical method for the solution 
of the spatial dependence is the spectral method using the fast Fourier transform 
[ 161. The time evolution of the system is followed by numerically integrating the 
equations for the time variation of the Fourier components. In the spectral method 
the spatial derivatives and integrals can be evaluated exactly for a given represen- 
tation. Using the fast Fourier transform yields convolution sums in the Fourier space 
for the nonlinear terms in Eqs. (1) and (2). These convolution sums can be performed 
efftciently by transforming back to configuration space, performing the local 
products, and then taking the fast Fourier transform of the products. In the last step 
of this procedure, additional terms can appear because of the truncation of the 
Fourier expansion; these terms are called aliasing terms. It has been shown [ 17-191 
that for nonlinear equations these aliasing terms can introduce errors which grow in 
time. For quadratic nonlinearities of the type found in the one-dimensional Zakharov 
equations, the aliasing terms can be eliminated by using only two-thirds of the 
Fourier components for a particular mesh in the fast Fourier transform. 

For a system with a period L, we define the set of N grid points xj in configuration 
space by 

,.=JL I N’ (3) 

for j = 0, 1, 2 ,..., N - 1. Then the discrete Fourier representations of E(x, t) and 
n(x, t) are given by 

E(xj, t) = Ej(t) = 5 Ek(f) eikxi, 
k=-K 
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and 

n(xj, t) = nj(t) = $ n,(t) eikxj. 
k= -K 

In (4) and (5) the sums are over the values 

(5) 

where we choose A4 < N/3 to eliminate the aliasing terms and where K = 27&f/L. 
Thus, we use a truncated Fourier expansion. 

Substituting (4) and (5) into Eqs. (1) and (2), we obtain the set of ordinary 
differential equations for the Fourier components 

atEk + v,Ek + ik2Ek = -i(nE),, (6) 

a:n, + 2via,nk + k2nk = -k*(l El’),, (7) 

where we have included the damping terms which appear in more realistic cases. In 
all of the results presented in this paper, v, = vi = 0. Nevertheless, we shall carry these 
terms through the derivation in order to obtain the more general algorithm. We 
assume that the damping coefficients are linear; that is, they do not depend upon E, 
or nk. These damping coefficients may be functions of k. 

Using standard techniques [20], we rewrite Eqs. (6) and (7) as the integral 
equations 

n,(t) = n,(O) exp(-v,t) L cos(dw t) + vi 
sin(dw t) 

dFq I 

+ %X0> exP(-Vit) 
sin(/w r) 

dm 

-k2 i(jE2~)kexp[-vi(r-r’)] 
I 

sin[dm (t - t’)] dt, 

0 pq 

and 

Ek(t) = Ek(0) exp[-(ik2 + v,)t] 

- i f ’ (nE), exp[-(ik2 + ve)(f - t’)] dt’, 
0 

(8) 

(9) 

where nl is the first derivative of nk with respect to time. 
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Setting t = h, and using the trapezoidal rule to approximate the integrals, we find 

n,(h) = n,(O) exp(-v,h) [ cos(dm h) + vi sin(d$ “1 
I 

+ +X0> exp(-VA 
sin(dw h) 

dm 

- 
i 1 
+ k’(IE(O)I’), exp(-vi/z) sin(&V ‘) + 0(/z”) 

$Fq 

and 

E,(h) = EJO) exp[-(ik2 + v,)h] - i(h/2)( [n(h) E(h)], 

+ [n(O) E(0)lk expl-(ik2 + v,)h]} + O(h3). 

(10) 

(11) 

In these equations n and E with no subscripts represent the configuration space 
expressions n(x, t) and E(x, t). 

Equation (10) provides a value for n,(h) in terms of n,(O), n;(O), and E(0). Given 
the value n,(O), we can find n(h), then Eq. (11) can be solved for E(h). As mentioned, 
the convolution sums (nE), and (]E12), can be evaluated by using the fast Fourier 
transform. To solve Eq. (11) we first evaluate 

Ek = Ek(0) exp[-(ik2 + v,)h] (12) 

and 

(I@, = [n(O) E(0)lk exp[-(ik2 + v,)h]. 

Then taking the inverse Fourier transform of Eq. (1 l), we find 

(13) 

E,(h)= Ej - i(h/2)[nj(h)Ej(h)+ (H%)~]. (14) 

Since nj(h) is given by the solution to Eq. (lo), Eq. (14) can be used to find E,(h). 
The result is 

I, = Ej - i(h/2)(nz)j 
J 1 + i(h/2) nj(h) * (15) 

Finally, the fast Fourier transform can be used to find E,(h). Thus, the equations 
have been advanced one time step and the error is proportional to h3. From this 
derivation we can see that the reasons for obtaining an explicit scheme are that 
Eq. (2) is a Helmholtz equation, and Eq. (1) is linear in the electric field E. 

In order to continue the integration in time, we need the value of n;(h). Given the 
value of n and E, we can determine the value of it’. To show this we define 

u/( = n; (16) 
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and rewrite Eq. (7) in the form 

aruk + 2v,v, = -k’n, - k’(IEI’),. 

This equation can be rewritten as the integral equation 

(17) 

ok(f) = uk(O) exp(--2vit) - k2 f [nk + (lEl’)k] 
0 

X exp[-2v,(t - t’)] dt’. (18) 

Setting t = h and using the trapezoidal rule to approximate the integral, we find 

n;th)=n;(O)exp(-2vih)- (W)k*l[ndO) + (I~(O>l”>~l 

X eXp(-2Vih) + n,(h) + (/E(h)12)J + O(h3). (19) 

Thus, Eqs. (lo), (15), and (19) can be used to advance the solution of the 
Zakharov equations one time step. The algorithm is explicit and it is second-order 
accurate (i.e., the error is proportional to h’). In Section 4 we use the algorithm to 
solve the Zakharov equations for several test cases. The numerical results 
demonstrate the stability and convergence rate of the algorithm. 

3. ANALYTIC SOLUTION 

An analytic solution of the Zakharov equations can be found by using the energy 
method [21]. To find this solution we assume the forms 

E(x, t) = F(x - ut) exp [ i&x - it)] (20) 

and 
n(x, t) = G(x - a). (21) 

Substituting these forms into Eq. (2), we find for the periodic system that 

G(x - ut) = - IF(:_;;)‘* + no, (22) 

where the constant of integration no is chosen so that 

(n) = +, 1; n(x, t) dx = 0. (23) 

Substituting the expressions (20) and (21) into Eq. (1) gives 

q=f (24) 
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and 

F3 F-- 
l-v2 ’ (25) 

where F” means the second derivative with respect to the argument. The solution to 
Eq. (25) is 

F(x - uf) = &,a, dn(w, 41, (26) 

where dn(w, q) is a Jacobian elliptic function (22,231 

and 

q= VEFX 

E * (28) 
max 

The two constants of integration E,,, and E,,, are the maximum and minimum 
values of the electric field, respectively. In order that (26) satisfies Eq. (25), the 
constant u must have the value 

The period of the Jacobian elliptic functions is given by 

L~~m7 
E 

2 dm K’ 

max 
K(q)= E 

max 
(30) 

where K and K’ are complete elliptic integrals of the first kind [22, 231 and we have 
used K(q) = K’(dw). For a periodic solution the exponential term in (20) must 
also have a period equal to L; thus, we require 

+L=2nm, m = 1, 2, 3 ,.,. . (31) 

For the test cases given in the next section, the value of m was chosen to be one. 
As E,i, + 0 the parameter q -+ 1 and the period of the elliptic functions becomes 

infinite. For q = 1, 

dn(w, 1) = sech w (32) 

and for an infinite period the value of n, is zero. Therefore, for the infinite period 
case, the solution reduces to the usual hyperbolic secant form 1241. 
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The procedure for obtaining a periodic analytic solution is to: (1) choose values for 
E max and L; (2) determine u from Eq. (3 1); and (3) find a value of E,i, such that 
Eq. (30) is satisfied. In the next section we give the values of the parameters for two 
solutions with a period L = 20 and one solution with a period L = 160. 

4. NUMERICAL RESULTS 

For the first test cases of the algorithm we choose two solutions for a system with 
a period of 20.0 units. The first case has E,,, = 1.0 and the second case has 
E max = 10.0. The values of the various parameters for these two cases are given in 
Table I. In Fig. 1 we plot the absolute value of the electric fields at t = 0 for these two 
cases. From Table I it is obvious that the E,,, = 10.0 case will require a much 
smaller time step for convergence than the E,,, = 1.0 case, since the phase speed u of 
the electric field is much larger for E,,, = 10.0. 

To demonstrate the convergence of the algorithm, we start at t = 0 and integrate 
the equations until the soliton has moved a fixed distance D. Since the number of 
time steps is proportional to K i, the global error should be proportional to h2 if the 
error for each time step is of order h3. We define the error E as 

&= [i’ lE(x, t) - E,(x, t>12 dx/IL IE(x, t)12 dx]“*, 
0 0 

(33) 

where E(x, t) is the analytic solution and E,(x, t) is the numerical solution. In order 
to obtain accurate solutions of Eqs. (1) and (2) it is necessary that the number of 
Fourier components in Eqs. (4) and (5) be large enough to accurately represent the 
solution at any instant of time. In Fig. 2 we show the error in the expansion at t = 0 
for various values ofM. Since we are interested in the error caused by the time step, 
we must choose M large enough so that the initial error is much smaller than the 
error from the finite size of h. For the E,,, = 1.0 case we use M= 21 (N= 64) and 
M = 42 (N= 128). For the E,,, = 10.0 case we use M = 170 (iv’ = 5 12). For these 
values of M the error of the initial fit to the analytic expression is much smaller than 
the errors from the time integration. 

TABLE I 

Parameters for Three Analytic Solutions of the Periodic Zakharov Equations 

L E max Emin V u no 

A 20.0 1 .o 4.5 147 x 1o-J 0.6283 19 -1.73692 0.181786 
B 20.0 10.0 1.3421 x lo-” 0.6283 19 -256.872 1.81786 
c 160.0 1.0 1.0535 x 1o-3’ f0.628319 ~2.24323 0.0227232 
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FIG. 1. Absolute value of the electric field at t = 0 for E,,, = 1.0 and E,,, = 10.0. Also shown is 
the value of n at t = 0 for the E,,, = 1.0 case. 

As an additional test of the convergence, we evaluate the values of the conserved 
quantities [ 241 

(34) 

P= 1(Ei?,E*-E*c3,E)+nV dx, 
I 

-10.0 1 i , , , I ~ , , I , , ,I 
0 60 I20 180 240 xx, X 

NUMBER Cf MODES M 

0 

(35) 

FIG. 2. Error in the Fourier expansion of E(x, t) at I = 0. 
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and 

(36) 

where V is the flux. The value of V is determined from the continuity equation, 

a,n+a,v=o. (37) 

For the E,,, = 1.0 case we choose D = 20.0; that is, we integrate the equations 
until the soliton has moved through one period. In Table II we show the values of E 
for various step sizes for M = 21 (N= 64). Also, the values of the conserved quan- 
tities are given. From this table one can see that the values of the conserved quan- 
tities converge much more rapidly than the value of the solution. This demonstrates 
that the values of the conserved quantities are not necessarily a good test of the 
convergence of the solution [ 18, 191. In Table III we give some representative values 
of the error for M= 42 (N= 128). Once the solution starts to converge, the errors 
are the same for A4 = 2 1 and M = 42. In Fig. 3 we plot the error as a function of the 
step size h. The slope of the straight line drawn through the points is two. Thus, we 
find that the error is proportional to h* as predicted. 

TABLE II 

Values of the Error and the Conserved Quantities for Various Values 
of the Time Step Size h for E,,, = 1.0 (M= 21, N = 64) 

h 

0.15915 
0.14469 
0.13263 
0.11368 
0.09947 
0.08377 
0.07958 
0.06366 
0.05305 
0.04547 
0.03979 
0.03 183 
0.02653 
0.02274 
0.01989 
0.01592 
0.01326 
0.01137 
0.00995 
Initial 

& 

0.7694 
0.2454 
0.2055 
0.1496 
0.1138 
0.0800 
0.0720 
0.0455 
0.0313 
0.0228 
0.0174 
0.0110 
0.0076 
0.0056 
0.0042 
0.0027 
0.0019 
0.0014 
0.0010 

N P H 

2.1909860 1.9193250 1.1581687 
2.2007159 2.7777824 1.1385435 
2.2006243 2.7812398 1.1337540 
2.2005242 2.7852713 1.1271708 
2.2004703 2.7875208 1.1284796 
2.2004327 2.7894125 1.1295930 
2.2004257 2.7898196 1.1298345 
2.2004078 2.7910314 1.1305581 
2.2004015 2.7915768 1.1308869 
2.2003989 2.7918571 1.1310570 
2.2003976 2.7920155 1.1311536 
2.2003967 2.7921734 1.1312503 
2.2003963 2.7922435 1.1312934 
2.2003962 2.7922793 1.1313155 
2.2003962 2.7922995 1.1313279 
2.2003962 2.7923 195 1.1313403 
2.2003962 2.7923284 1.1313458 
2.2003962 2.7923330 1.1313487 
2.2003962 2.7923355 1.1313502 
2.2003964 2.7923410 1.1313535 
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TABLE III 

Values of the Error and the Conserved Quantities for Various Values 
of the Time Step Size h for E,,, = 1.0 (M = 42, N = 128) 

h 
0.15915 
0.07958 
0.03979 
0.01989 

Initial 

N P H 
0.3:7 1 2.2011965 2.6708686 3.4969320 
0.0719 2.2004262 2.7898209 1.1298360 
0.0174 2.200398 1 2.7920166 1.1311539 
0.0042 2.2003965 2.7923001 1.1313281 

2.2003964 2.7923410 1.1313535 

For the E,,, = 10.0 case we choose D = 1.0. For this case a much smaller time 
step is required for convergence, and in order to reduce the amount of computer time 
we have chosen a smaller value of D for this case. In Table IV we give the value of E 
for various values of h, as well as the values of the conserved quantities. Once again, 
we find that the values of the conserved quantities converge much more rapidly than 
the value of the solution. In Fig. 4 we plot the error as a function of h and we find 
that the error is proportional to h2. The much smaller value of h required to obtain an 
accurate solution is to be expected since we have used the trapezoidal rule to 
integrate the nonlinear terms; for larger values of E and n the nonlinear terms will be 
larger and a smaller value of h will be required to give accurate numerical results. 
For E,,, = 10.0 the nonlinear terms are lo3 times the nonlinear terms for E,,, = 1.0 
and the ratio of the step sizes required in order to obtain the same value of E is 
3 x 10-3. Thus, we see that the step size required for an accurate solution depends 
upon the values of E and n for the particular case being studied. 

Finally, as a more realistic test of the algorithm we consider the case of two 
colliding solitons. For this case we consider two solutions with the same value of 
E max = 1.0 but with oppositely directed velocities. In order to study the effects of the 
collision we consider a much longer system. We have chosen L = 160.0 so that the 
waves emitted by the collision stay within the system during the time period of the 

TIME STEP h 

FIG. 3. Error in E(x, t) as a function of the step size h for E,,, = 1.0 (D = 20.0). The straight line 
has been drawn with a slope of 2.0 through the bottom point to show that the global error goes ash’. 
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TABLE IV 

Values of the Error and the Conserved Quantities for Various Values 
of the Time Step Size h for I?,,,,, = 10.0 (M = 170, N = 512) 

h E N P H 

0.001273 
0.001061 
0.000796 
0.000637 
0.000455 
0.0003 18 
0.000159 
0.000106 

Initial 

0.8980 
0.6423 
0.3704 
0.2397 
0.1238 
0.06 15 
0.0162 
0.0077 

22.006015 2481.7097 971.89067 
22.004228 2481.7110 971.58963 
22.003139 2481.7124 971.38565 
22.002947 2481.7133 971.32040 
22.003025 2481.7142 971.27270 
22.003227 2481.7149 971.24553 
22.003553 2481.7157 971.21623 
22.003674 2481.7160 971.20641 
22.003923 2481.7166 971.18653 

computer run. The parameters for the two solitons are given in Table I. In Fig. 5 we 
show the real and imaginary parts of the electric field at t = 0. 

Since the solution for two colliding solitons cannot be written in an analytic form 
we have chosen an extremely accurate numerical solution to use as the exact result in 
Eq. (33) for the error E. Using this “exact” solution we show in Fig. 6 the value of the 
error as a function of h for two different times. The time t = 15.9 corresponds to the 
time when the two solitons are at the same position and the time t = 3 1.8 corresponds 
to a time when the collision is nearing completion. For both times we find the error is 
proportional to h2 as predicted. 

To show the effects of the collision, we have plotted in Figs. 7 and 8 the values of 
jE(x, t)l and n(x, t) at various times. From these plots we can see that during the 
collision waves are emitted, and that after the collision the two solitons have a 

TIME STEP h 

FIG. 4. Error in E(x, t) as a function of the step size h for E,,, = 1.0 (D = 1.0). The straight line 
has been drawn with a slope of 2.0 through the bottom point to show that the global error goes as h2. 
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0.2 

0 

-0.2 r 
0 

-0.2 

- 0.4 

-0.6 

- 0.8 

-1.0 : i 

FIG. 5. Real and imaginary components of the electric field at t = 0 for two solitons with 
E nlax = 1.0. Each soliton is moving with a speed u towards the origin. 

reduced value of E,,,. The density waves move at the sound speed, and the electric 
field waves move more rapidly. In Figs. 9 and 10 we show the values of the electric 
field and the density at t = 3 1.8. 

Since the values of E and n are much larger during the collision, we expect that the 
errors will be larger during this time. To demonstrate that this is the case, we have 

n 

TIME STEP h 

FIG. 6. Error in E(x, t) as a function of the step size h for two colliding solitons. The straight line 
has been drawn with a slope of 2.0 to show that the global error goes as h2. 
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FIG. 7. Absolute value of the electric field for various times for two colliding solitons with 
E = Inax 1.0. 

I 
0 

-I 

I 
0 

1; 

I 
0 

1: 
-80 -40 0 40 80 

x 

FIG. 8. The density for various times for the two colliding solitons shown in Fig. 7. 
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-0.4 

-0.6 

-0.8 

-1.0 1 I I 
-80 40 0 40 80 

x 

FIG. 9. The real and imaginary components of the electric field at r = 31.8 for 
solitons. 

plotted the errors in the conserved quantities N and H as a function 
Figs. 11 and 12. We have defined the errors as 

two colliding 

of time in 

E, = N - N,(t) H - H,(r) 
N 

and EH = 
H ’ 

1.0 I 1.0 I I I 

0.5 - 

0 _----~ 
1 ,-\ I /’ \ , 
‘1 () ’ /I 
‘i ” 

/ ’ 
-0.5 - I ’ 

, I : I 
, ’ 

1 I 
-1.0 - / / - IEI 

11 ---” 
I’ , 

-1.5 I I 1 
-30 -15 0 15 30 

x 

FIG. 10. The absolute value of the electric field and the density at t = 3 1.8 for two colliding solitons. 
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0.005 

0.004 

0.003 

uz 

f5 
E 

0.002 

w 

0.001 

- h = 0.0318 
- - - h = 0.0159 

0 5 IO 15 20 25 30 

TIME t 

FIG. 11. Error in the conserved quantity N as a function of time for two different values of the step 
size h. 

where N and H are the initial values of the conserved quantities, and N,(t) and H,(t) 
are the values of the conserved quantities at time t evaluated using the numerical 
solution of the equation found with a step size h. From Figs. 11 and 12 we can see 
that during the collision, which occurs around the time t = 15.9, the errors in the 
conserved quantities are much larger. The errors in these conserved quantities 
decrease after the collision. During the collision larger values of k are important and 

u.= -0.004 
5 
E 
w -0.006 

-0.008 

-0.012 I 
0 5 IO 

/ 
- h = 0.0318 
- - - h = 0.0159 

I I I 

20 25 30 

TIME t 

FIG. 12. Error in the conserved quantity H as a function of time for two different values of the step 
size h. 
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a smaller step size is required to accurately advance these modes. After the collision 
these modes are not as important and the numerical errors in these modes have a 
smaller effect on the values of N and H. 

Although it is not the purpose of this paper to present a detailed physical 
discussion of the collision of two Langmuir solitons, we do note the presence of 
nonsolitonic radiation in the density n (Fig. 8 at times 25.5 and 31.8) and in the 
electric field E (Fig. 9). This radiation is a significant feature of the collision of two 
solitons in a nonintegrable system [25] and analytic descriptions are available [ 261. 
The shelf-like structures seen most vividly in ]E] around x = f 15 in Fig. 10 have seen 
a great deal of study in connection with soliton propagation in density gradients and 
in dissipative media [27, 281. 
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